Macam – Macam Diagram Ven Dan Penjelasannya

Hadir kembali kami dari jagomatematika.info dengan materi yang akan membantu belajar teman- teman semuanya agar menjadi seseorang yang jago dalam pelajaran matematika dan pada kesempatan kali ini kita akan membahas mengenai materi Himpunan yaitu cara penyajian Himpunan dengan Diagram Venn dengan cara menggambarnya juga hubungan himpunan bila dinyatakan dalam diagram venn. berikut ini Macam – Macam Diagram Ven Dan Penjelasannya selangkapnya.

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

Oke membahas sedikit tentang sejarah diagram venn jadi diagram Venn diperkenalkan oleh pakar Matematika Inggris pada tahun 1834 – 1923 bernama John Venn. Nah tau kan sekarang kenapa kita sebutnya diagram venn ?karena penemunya bapak John Venn, dimana venn di ambil dari nama belakang penemunya.

Definisi :Gambar himpunan yang menyatakan himpunan-himpunan serta hubungan antara beberapa himpunan dalam semesta pembicaraan tertentu.

Beberapa hal yang perlu diperhatikan dalam membuat diagram venn

  1. Buatlah persegi panjang atau persegi
  2. Himpunan semesta digambarkan dengan persegi panjang dan lambang S yang mana ditulis pada sudut kiri atas dalam gambar persegi panjang. Himpunan semesta (S) adalah himpunan yang memuat semua anggota himpunan yang dibicarakan.
  3. Setiap himpunan lain yang dibicarakan digambarkan dengan lingkaran (kurva tertutup) kecuali yang tidak termasuk dalam himpunan lain yaitu dituliskan diluar lingkaran.
  4. Setiap anggota ditunjukkan dengan noktah (titik) dan anggota himpunan ditulis di samping noktah tersebut.

Berikut adalah contoh diagram venn

S={1,2,3,4,5,6,7,8,9}

A={1,3,4,2,5}

B={2,5,7,6}

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

Hubungan antar 2 Himpunan

  1. Himpunan yang Berpotongan

Himpunan A dan B saling berpotongan jika ada anggota himpunan A dan B yang sama. Himpunan A berpotongan dengan himpunan B dapat ditulis A∩B. Himpunan yang berpotongan dapat dinyatakan dengan diagram Venn pada Gambar dibawah ini

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

  1. Himpunan Saling Lepas

Himpunan A dan B dikatakan saling lepas jika tidak ada anggota himpunan A dan B yang sama. Himpunan A saling lepas dengan himpunan B dapat ditulis A//B. Himpunan saling lepas dari himpunan A dan B dinyatakan dengan diagram Venn seperti pada Gambar di bawah ini

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

  1. Himpunan Bagian

Himpunan A dapat dikatakan himpunan bagian dari himpunan B jika semua anggota himpunan A merupakan anggota dari himpunan B. Himpunan A merupakan himpunan bagian dari himpunan B dapat dinyatakan dengan diagram Venn seperti pada Gambar di bawah ini

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

  1. Himpunan yang Sama

Himpunan A dan B dikatakan himpunan yang sama jika setiap anggota A merupakan anggota B dan setiap anggota B merupakan anggota A. Misalnya A = {1, 2, 3} dan B = {3, 2, 1} dapat dikatakan himpunan A sama dengan himpunan B dan dapat ditulis A = B. Dengan diagram Venn dapat dinyatakan seperti pada Gambar dibawah ini

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

  1. Himpunan yang Ekuivalen

Dua himpunan dikatakan ekuivalen jika banyaknya anggota dari kedua himpunan tersebut sama. Contoh: A = {a, b, c, d}; B = {1, 2, 3, 4} A dan B dikatakan himpunan yang ekuivalen. Himpunan A ekuivalen dengan himpunan B jika:n(A) = n(B)

Dalam Himpunan kita mengenal beberapa istilah sepert Irisan, gabungan dan selisih seta komplemen

  1. Irisan Himpunan

Irisan dari dua himpunan A dan B adalah himpunan yang anggota-anggotanya ada di himpunan A dan ada di himpunan B. Bisa dikatakan himpunan yang anggotanya ada di kedua himpunan tersebut.

Contoh: A = {a, b, c, d, e} dan B = {b, c, f, g, h}

Pada kedua himpunan tersebut ada dua anggota yang sama yaitu b dan c. Oleh karena itu, dapat dikatakan bahwa irisan himpunan A dan B adalah b dan c atau ditulis dengan:

A ∩B = {b, c}

A∩B dibaca himpunan A irisan himpunan B. Dengan diagram Venn A∩B dapat dinyatakan seperti pada Gambar di bawah ini

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

  1. Gabungan Himpunan

Gabungan dari dua himpunan A dan B merupakan suatu himpunan yang anggota-anggotanya ialah anggota himpunan A atau anggota himpunan B atau anggota kedua-duanya.

Contoh: A = {1, 2, 3, 4} dan B = {4, 5, 6, 7}

Gabungan dari kedua himpunan A dan B adalah {1, 2, 3, 4, 5, 6, 7} atau dapat ditulis:

A ᴗB = {1, 2, 3, 4, 5, 6, 7}

AᴗB dibaca himpunan A gabungan himpunan B. Dengan diagram Venn, AᴗB ditunjukkan oleh Gambar berikut

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

  1. Komplemen

Komplemen dari himpunan A adalah himpunan yang anggota-anggotanya bukan merupakan anggota himpunan A.

Contoh: S = {0, 1, 2, 3, 4, 5, 6, 7}

A = {2, 3, 4, 5}

Komplemen dari himpunan A adalah {0, 1, 6, 7}. Komplemen dari himpunan A dinotasikan atau ditulis A’ dibaca A komplemen atau komplemen dari A. Komplemen A juga dapat dinyatakan dengan diagram Venn. Diagram Venn dari A’ dinyatakan seperti Gambar berikut:

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

Contoh Soal

  1. Perhatikan diagram Venn Di bawah ini

learning_numbers-300x200 Macam - Macam Diagram Ven Dan Penjelasannya

Tags:

Leave a Reply