Rangkuman Materi Transformasi Geometri Lengkap

Kali ini rumus matematika akan membahas materi mengenai transformasi geometri. Mungkin teman-teman telah tahu tentang transformasi geometri, untuk lebih memahami mengenai materi ini berikut ini akan dijelaskan secara terperinci hal-hal mengenai transformasi geometri.

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

TRANSFORMASI GEOMETRI

Transformasi merupakan suatu pemetaan titik pada suatu bidang ke himpunan titik pada bidang yang sama. Jenis-jenis dari transformasi yang dapat dilakukan antara lain :

  1. Translasi (Pergeseran)
  2. Refleksi(Pencerminan)
  3. Rotasi(Perputaran)
  4. Dilatasi(Penskalaan)

Berikut ini ilustrasinya :

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

TRANSLASI / PERGESERAN

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

Berdasarkan gambar di atas, segitiga ABC yang mempunyai koordinat A(3, 9), B(3, 3), C(6, 3) ditranslasikan:

 

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Berdasarkan penjelasan diatas, maka untuk mencari nilai translasi dapat digunakan rumus sebagai berikut :

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

dimana :

  • a menyatakan pergeseran horizontal (kekanan+, kekiri-)
  • b menyatakan pergeseran vertikal (keatas+,kebawah-)

 

REFLEKSI / PENCERMINAN

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Segitiga ABC dengan koordinat A(3, 9), B(3, 3), C(6, 3) dicerminkan:

  • terhadap sumbu Y menjadi segitiga A2B2C2 dengan koordinat A2(-3, 9), B2(-3, 3), C2(-6, 3)
  • terhadap sumbu X menjadi segitiga A3B3C3 dengan koordinat A3(3, -9), B3(3, -3), C3(6, -3)
  • terhadap titik (0, 0) menjadi segitiga A4B4C4 dengan koordinat A4(-3, -9), B4(-3, -3), C4(-6, -3)

 

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Segitiga ABC dengan koordinat A(3, 9), B(3, 3), C(6, 3) dicerminkan:

  • terhadap garis x = -2 menjadi segitiga A5B5C5 dengan koordinat A5(-7, 9), B5(-7, 3), C5(-10, 3)
  • terhadap sumbu y = 1 menjadi segitiga A6B6C6 dengan koordinat A6(3, -7), B6(3, -1), C6(6, -1)

 

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Segitiga PQR dengan koordinat P(6, 4), Q(6, 1), R(10, 1) dicerminkan:

  • terhadap garis y = x menjadi segitiga P2Q2R2 dengan koordinat P2(4, 6), Q2(1, 6), R2(1, 10)
  • terhadap garis y = -x menjadi segitiga P3Q3R3 dengan koordinat P3(-4, -6), Q3(-1, -6), R3(-1, -10)

Berdasarkan penjelasan diatas dapat dirumuskan :

Pencerminan terhadap garis x = a atau y = b

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Pencerminan terhadap sumbu x atau sumbu y

 

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Pencerminan terhadap titik (0, 0)

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

Pencerminan terhadap garis y = x atau y = –x

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

Pencerminan terhadap garis y = mx + c

Jika m = tan θ maka:

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

ROTASI / PERPUTARAN

 

 

Untuk rotasi searah jarum jam, sudut diberi tanda negatif (–)

Untuk rotasi berlawanan arah jarum jam, sudut diberi tanda positif (+)

Segitiga ABC dengan koordinat A(3, 9), B(3, 3), C(6, 3) dirotasi:

  • +90° atau –270° dengan pusat rotasi O(0, 0) menjadi segitiga A2B2C2 dengan koordinat A2(-9, 3), B2(-3, 3), C2(-3, 6)
  • +270° atau –90° dengan pusat rotasi O(0, 0) menjadi segitiga A3B3C3 dengan koordinat A2(9, -3), B2(3, -3), C2(3, -6)
  • +180° atau –180° dengan pusat rotasi O(0, 0) menjadi segitiga A4B4C4 dengan koordinat A4(-3, -9), B4(-3, -3), C4(-6, -3)

Berdasarkan penjelasan diatas, maka rotasi dapat dirumuskan sebagai berikut :

Rotasi sejauh θ dengan pusat (a, b)

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Rumus praktis untuk rotasi dengan pusat rotasi O(0, 0):

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

DILATASI / PENSKALAAN

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

Segitiga ABC dengan koordinat A(3, 9), B(3, 3), C(6, 3) didilatasi:

  • dengan faktor skala k = 1/3 dan pusat dilatasi O(0, 0) menjadi segitiga A2B2C2 dengan koordinat A2(1, 3), B2(1, 1), C2(2, 1)
  • dengan faktor skala k = 2 dan pusat dilatasi O(0, 0) menjadi segitiga A3B3C3 dengan koordinat A3(6, 18), B3(6, 6), C3(12, 6)

Untuk nilai k negatif, arah bayangan berlawanan dengan arah aslinya.

Berdasarkan penjelasan diatas, maka dapat dirumuskan :

Dilatasi dengan pusat (a, b) dan faktor skala k

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Rumus praktis dilatasi dengan faktor skala k dan pusat dilatasi O(0, 0):

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Selain 4 transformasi yang telah dijelaskan diatas, juga terdapat 2 transformasi lagi yaitu shearing / gusuran dan stretching / regangan. Perhatikan penjelasan dibawah ini :

GUSURAN/SHEARING

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

Persegi panjang ABCD dengan koordinat A(1, 1), B(4, 1), C(4, 6), D(1, 6) akan digusur:

  • menurut arah sumbu X (invariant sumbu X) dengan faktor skala k = 2 menjadi persegi panjang A2B2C2D2 dengan koordinat A2(3, 1), B2(6, 1), C2(16, 6), D2(13, 6)
  • menurut arah sumbu Y (invariant sumbu Y) dengan faktor skala k = 2 menjadi persegi panjang A3B3C3D3 dengan koordinat A3(1, 3), B3(4, 9), C3(4, 14), D3(1, 8)

Pengaruh nilai k:

  • untuk gusuran menurut arah sumbu X → k positif arahnya ke kanan, k negatif arahnya ke kiri
  • untuk gusuran menurut arah sumbu Y → k positif arahnya ke atas, k negatif arahnya ke bawah

Berdasarkan penjelasan diatas, maka dapat dirumuskan sebagai berikut :

Gusuran menurut arah sumbu X (Gx) dengan faktor skala k maka :

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Gusuran menurut arah sumbu Y (Gy) dengan faktor skala k maka :

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

STRETCHING / REGANGAN

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Persegi panjang ABCD dengan koordinat A(1, 1), B(4, 1), C(4, 6), D(1, 6) diregangkan:

  • searah sumbu X dengan faktor skala k = 3 menjadi A2B2C2D2 dengan koordinat A2(3, 1), B2(12, 1), C2(12, 6), D2(3, 6)
  • searah sumbu Y dengan faktor skala k = 2 menjadi A3B3C3D3 dengan koordinat A3(1, 2), B3(4, 2), C3(4, 12), D3(1, 12)

Pengaruh nilai k:

  • untuk regangan searah sumbu X → k positif arahnya ke kanan, k negatif arahnya ke kiri
  • untuk regangan searah sumbu Y → k positif arahnya ke atas, k negatif arahnya ke bawah

Berdasarkan penjelasan diatas, maka dapat dirumuskan :

Regangan searah sumbu X (Sx) dengan faktor skala k

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Regangan searah sumbu Y (Sy) dengan faktor skala k

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Transformasi dengan Matriks Transformasi Tertentu

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

KOMPOSISI TRANSFORMASI

merupakan gabungan dari beberapa transformasi. Misalnya kita mempunyai transformasi T1 akan dilanjutkan ke T2 maka ditulis T2oT1.

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

Komposisi Khusus :

1. Dua pencerminan yang berurutan terhadap sumbu-sumbu yang sejajar

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

2. Dua pencerminan yang berurutan terhadap dua sumbu yang tegak lurus ekuivalen dengan rotasi 180º yang pusatnya adalah titik potong kedua sumbu tersebut.

3. Dua pencerminan terhadap dua sumbu yang berpotongan ekuivalen dengan rotasi dimana titik pusat adalah titik potong kedua sumbu dan sudutnya adalah sudut antara kedua sumbu.

4. Dua rotasi berurutan terhadap pusat yang sama ekuivalen dengan rotasi dimana pusatnya sejauh jumlah sudut keduanya.

 

LUAS HASIL TRANSFORMASI

Transformasi yang berupa translasi, refleksi, dan rotasi tidak mengubah luas suatu benda

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Mencari luas segitiga ABC jika diketahui koordinat titik A, B, dan C nya, maka kita dapat gunakan rumus :

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

Perhatikan contoh soal transformasi berikut ini.

Tentukanlah persamaan bayangan kurva y = x2 + 3x -4 jika dicerminkan terhadap sumbu X, kemudian didilatasikan dengan faktor skala 2 dengan pusat dilatasi O(0, 0)

Penyelesaian :

cara 1 : cara langsung

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

 

cara 2 : menggunakan matriks

transformasi-geometri Rangkuman Materi Transformasi Geometri Lengkap

Tags: