Sifat- Sifat Sudut Antara Dua Garis Sejajar

Semangat dalam belajar matematika dan jangan pernah mengeluh dengan kesulitan matematika. Sebenernya matematika itu bukan mata pelajaran yang sulit, namun matematika adalah salah satu mata pelajaran yang membutuhkan ketekunan, keuletan dan juga ketelitian dalam mengerjakan setian soal – soal matematika. nah disini teman – teman akan menemukan rangkuman beserta penjelasan soal matematika yang sedang teman -teman cari selama ini. pada kesempatan kali ini kita akan belajar tentang Sifat- Sifat Sudut Antara Dua Garis Sejajar

images-9 Sifat- Sifat  Sudut Antara Dua Garis Sejajar

Untuk itu, perhatikanlah penjelasan ini. Garis l // m dipotong oleh garis g. Garis g memotong garis l di titik A dan memotong di titik B, sehingga terbentuklah sudut-sudut, A1, A2, A3, A4, B1, B2, B3, dan B4.

Perhatikan gambar di bawah ini!

1. Pasangan sudut A1 dan B1, A2 dan B2 disebut pasangan sudut-sudut sehadap.

2. Pasangan sudut A3 dan B1, A4 dan B2 disebut sudut dalam berseberangan.

3. Pasangan sudut A1 dan B3, A2 dan B4 disebut sudut luar berseberangan.

4. Pasangan sudut A3 dan B2, A4 dan B1 disebut sudut dalam sepihak.

5. Pasangan sudut A1 dan B4, A2 dan B3 disebut sudut luar sepihak.

Sifat 1

Jika dua buah garis sejajar dipotong oleh suatu garis, maka sudut-sudut sehadap yang terbentuk sama besar, ÐA1ÐB1ÐA2ÐB2ÐA4ÐB4, dan ÐA3ÐB3.

Sifat 2

Jika dua buah garis sejajar dipotong oleh suatu garis ketiga, maka sudut-sudut dalam berseberangan yang terbentuk sama besar, ÐA2ÐB4ÐA3ÐB1.

Pembuktian!

Perhatikan Gambar di bawah ini. Garis l // m, garis g memotong l di titik A dan memotong m di titik B.

ÐA2 ÐB(sehadap)
ÐBÐB(bertolak belakang)

Maka,
ÐAÐB(sudut dalam berseberangan) terbukti.

Sifat 3

Jika dua buah garis sejajar dipotong oleh suatu garis, maka sudut-sudut luar berseberangan sama besar, ÐA1 = ÐB3ÐA2 = ÐB4.

Pembuktian!

Untuk membuktikan sifat ini, perhatikanlah uraian berikut ini. Misalkan l // m, dan garis k memotong
l di A dan garis k memotong m di B.

ÐA1 = ÐB3, buktikan.

Bukti:
ÐA1 = ÐA3 (bertolak belakang)
ÐA1 = ÐB1 (sehadap)

Sedangkan 
ÐB1 = ÐB3 (bertolak belakang)
ÐB1 = ÐA1, maka ÐA1 = ÐB3 (terbukti).

Sifat 4

Jika dua buah garis sejajar dipotong oleh suatu garis, maka sudut-sudut dalam atau luar sepihak jumlahnya 180o (berpelurus).

Pembuktian!

Untuk membuktikan sifat ini perhatikanlah uraian berikut ini. Diketahui garis l dan m sejajar (l // m). Garis h memotong l di titik A dan memotong m di titik B.

Buktikan bahwa:
ÐA3ÐB2 = 180o atau ÐA4ÐB1 = 180o

Bukti:
Dari gambar dapat dilihat:
ÐA4ÐB4 (sudut sehadap) …. (1)
ÐB4ÐB1 = 180o (sudut berpelurus) …. (2)
(1) ==> (2): ÐA4ÐB1 = 180o (terbukti)

 

Tags: